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Effects of Magnus Moments on
Missile Aerodynamic Performance

1 INTRODUCTION

The goal of the atmospheric research program, Rocket Electric Field Sound-
ing (REFS), is to determine the min'mum electrical field strength that would
pose a lightning strike hazard to ascending rockets such as the Space Shuttle.
The 2.75-in. Folding Fin Aircraft Rocket (FFAR) was selected to carry the
scientific payload. The FFAR missile is aerodynamically unstable at launch,
until the fins spring out. To minimize the effects of the instability, several
versions of the missil:. have nozzle designs that provide a roll moment during
thrust. When a spinning cylindrical body experiences any pitch or yaw to
the local windstream, a side force is produced which is proportional to both
thla angle of yaw and the angular velocity of the spin. This is the well known
Magnus effect. If the center of pressure for this force is too far from the center
of mass, the resulting moments can cause the projectile to be dynamically
unstable.

1

The FFAR configuratior,, which will be used for the REFS experiment,
has the potential for higher than normal moments from the Magnus forces
due to the fact that the outer shell of the payload section of the missile is
designed to spin at a rate that is different from the rate of the rearward
portion of the missile, as shown in Figure 1. The net effect is that any pitch
or yaw of the missile produces magnus forces of different magnitudes for each
portion of tbe body, resulting in a moment on the missile.

The purpose of this study is to perform an approximate analysis of the ro-
tatioral motlion of the REFS missile to determine the potential for instability

RWceived for publication i July 1992



due to the Magnus moments.

2 THEORY

The motion of a vehicle in flight is governed by Newton's Laws of motion,
which strictly apply to each point mass that makes up the object. When
these laws are properly applied to each infinitesimal portion of the body, the
total effect on a rigid body can be represented by three scalar equations of
linear motion of the center of mass of the vehicle and three scalar equations
of rotational motion of the body about the center of mass. An analysis that
considers both linear and rotational motion is known as a six degree of free-
dom analysis (6DOF). There are several computer models that perform this
complete analysis (for example, MASS); 2 howevr, these complete simula-
tions are often complex and difficult to use to isolate specific cause and effect
relationships.

For this work, only the rotational motion will be analyzed. The magni-
tude of the velocity of the missile is considered an independent variable which
is specified to vary with time in a way similar to that observed in test flights.
The velocity vector is assumed to always point in the same direction and
missile rotations are analyzed relative to this fixed direction. This simplifica-
tion differs from reality in two important ways. First, the change in velocity
direction as a vehicle moves along the trajectory provides a continual forcing
function to change the angular position of the vehicle. In this regard, the
analysis can be considered incomplete and possibly non-conservative since a
perturbation is usually only introduced at the start of the analysis and, if it
damps out, the vehicle is assumed stable. Second, this analysis ignores the
effect that angular position relative to the velocity vector has on the velocity
itself. For a reasonable missile vehicle which does not experience very large
divergence angles from the velocity vector, this is not a problem except for
the thrusting phase of flight. While thrusting, the vehicle, in effect, reduces
angular divergences by causing changes to velocity to be in the direction of
the flight vehicle if the rocket nozzles are aligned with the missile. Conse-
quently, the angular motions predicted during thrusting are larger than those
that would be act.ally experienced in flight.

2.1 Rotational Motion:

The equations governing the rotational motion about the center of mass of
an object are known as Euler's Equations.3 The three scalar components are
represented by the single vector equation:

M ,(1)
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Figure 1: The REFS Missile
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where
M, is the moment about the center of mass,

and
He,, is the time derivative of the angular momentum vector about the center
of mass.

The change in the H vector must be with respect to either an inertial
coordinate system or a non-rotating coordinate system through the center of
mass of the body. The latter is most often used for analysis of flight systems.
The forces and moments experienced by a flight vehicle are usually expressed
in terms of a coordinate system that is fixed to and rotating with the vehicle.
Consequently, it is not convenient to express these forces and moments in
terms of a noin-rotating system. The equation can remain expressed in terrms
of the convenient system provided the following identity is used to correctly
determine the derivative relative to a non-rotating system.

d A . y . ( A + (O x A (2 )

where A is a general vector, 1 is the angular velocity of the rotating xyz
system relative to the non-rotating XYZ system, and (A-,) is the time
derivative of the vector as inferred by an observer located on the rotating
xyz system. With that identity, Euler's equation becomes:

M = (-- 9 + fl x H, (3)

The task at hand is to define the relationship of the convenient coordinate
system to the non-rotating coordinate system. This is often accomplished by
defining a sequential set of rotations of the convenient system about one axis
at a time, beginning with the convea'ient system aligned with the non-rotating
system. These rotations are referrei to as Eu!er Angles.

The most convenient system for +b-js problem is a simplification of the
standard way that body rotations are described for aircraft.4 The axis of
symmetry of the aircraft is first aligned with the X axis of a system that
maintains its origin at the center of mass of the aircraft, but does not rotate.
The X axis is horizontal pointing forward, the Y axis points to the right of
the aircraft, and the Z axis points down. This is shown in Figure 2. For
purposes of this study, the velocity stays aligned with the X axis. The first
rotation is a positive rotation about the Z axis an angle 4, which results
in a new X and Y axis position, next is a rotation about the new Y ,axis
an angle 0. A full, body-fixed axis system would now incorporate any roll
about the new X axis in a roll angle 4. Since the REFS missile spins at
a substantial rate about the new X axis, and since the missile is assumed

4
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Figure 2: The Yaw-Pitch Euler Angle Coordinate System

to experience forces and moments that are independent of the roll position,
the coordinate system for this study will not go through this final rotation.
The convenient xyz system has the x axis aligned with the axis of symmetry
of the missile pointing forward, the y axis always remains in the horizontal
plane toward the right when looking at the missile from the rear, and the xz
plane is always a vertical plane, with the z axis orthogonal to the x and y
axes. Due to symmetry, the zyz system is a principal axis system with no
cross moments of inertia and with I, equal to I,,, which will be referred to
as I'. I., will be referred to as simply I.

The components of the angular velocity vector w, expressed in the con-
venient system, are expressed as follows: the angular velocity p about the x
axis, q about the y axis, and r about the z axis. The angular momentum, in



Y x

* z

Figure 3: The Angular Velocities in the Yaw-Pitch Euler Angle Coordinate
System

the body system coordinates, is simply:

H,,,, = Ip i +'q j + I'r k (4)

where , j, and k aie unit vectors in the xyz system. Note that the spinning
outer shell of the payload section could affect the overall angular momentum
of the venicle, but for this missile it has a negligible contribution and has
been ignored. The angular velocity must also be expressed in terms of the
angular velocities 3f the Euler angles. By inspection of Figure 3, it can be
seen that the body- fixed rates are related to the Euler angle rates by the
equations:

w•= p = q•-•sin8

w,= q -' 0 (5)

z "r = •Cos

6



The angular momentum of the missile, expressed in terms of the Euler
angles, is: ,H = I ( - iksin0) i + I' j + P' t,cos0 k (6)

Since the z axis always points to the nose, the moments ot' inertia in this
system are independent of the rotations T'he tinte der-ivative of A as inferred
by an observer on the zyz system is then:

di , (7)
+I'i j + I, (€cos0- ?0sin0) k

The rotation of the xyz coordinate system is the same as the rotation of the
missile except for the final ý about the x axis:

0 = -ý,sin 0 i + 0 j + €cos0 k (8)

When the cross product and the time derivative are substituted back into
Euler's Equation, the following scalar equations result:

•.z= If- IisinO- I~i/cos0

FTy = 1'G+(I'-I)•]2 sinOcosO+I4iPqcos9 (9)

ET, = l'cosO-(21'- I)?OsinO - Iq4

The above procedures yield equations of ro'ational motion with all the
kinematic terms as functions of the Euler angles and with moments computed
relative to the convenient body pointing, but not fi,'lly body fixed, coordi-
nates. The aerodynamic forces and moments are defined and most easily
expressed in terms of these body pointing coordinates. To have a complete
set of equations for solution, equations relating position relative to the body
pointing system to the Euler angle system must be developed. These are
obtained by determining the direction of the velocity vector in both systems.
Since, for this work, the velocity vector is always aligned with X, the com-
ponents of velk'city relative to the body system are simple functions of the
Euler angles. The velocity vector in terms of the fixed system is:

V = V I+0 J+0 K (10)

To obtain the components in terms of the new basis vectors of the body
system, the components in the original system are left multiplied by the two
rotation matrixes that describe first a positive rotation ?k about the Z axis
followed by a positive rotation 0 about the new Y axis3 as follows:

u cos60 0 -sin 0][ cos 0 sin tk 0][V
= 1 0 -sin i cos4' 0 0 (11)

sin 0 cosO 0 0 1

7



This results in the three components:

U = VcosOcost
v = -Vsino (12)
w = Vsin0cosb

The position of the body relative to the velocity vector is expressed in terms
of the angle of attack, a, and the angle of sideslip, P. A useful angle is the
"total angle of attack", 0, a single angle incorporating the effect of both
angle of attack .- nd angle of sideslip. These angles can be expressed iD terms
of the Euler angles by applying the definitions:

tan a = w/U
sin/5 = v/V (13)
cosO = u/V

when the component;s from Eq. 12 are substituted into the above, the follow-
ing identities result:

0 = -0 (14)

0 = cos-' (cos 0 cos p)

For the sake of completeness, it is useful here to develop the angle of attack
and sideslip relationshi ' b elative to a complete body fixed coordinate system.
The output of 6DOF iimulations is usually in terms of these angles, which
are subscripted with BF in this work to distinguish them from the body
pointing system. In or-cit, to express the velocity vector in a full body fixed
system, one more rote ,ion must be accomplished: a rotation of a positive
angle 0 about the new X axis. This is accomplished by the matrix operation:[UBF 1 I 1 0 0 iVCos 0Cos,1

VBF = cos sin 1 -Vsin1' (15)
WBF.ý 0 -sine coslJ Vsin0cosol

This results in the fH Ilowing equations for the velocity components:

UpPF = VcosOcosO
VBF = -Vcos4,sink + Vsin4,sin0cos4' (16)
WBF = Vsin4,sint+Vcos4,sin0costk

Now apply the definitions of the angles in Eq. 13 to obtain:

aBF = tan 1 (sin4tanbsecO+cos4tan0) (17)
/3RF = sin- (-cos4sine + sin4,sin0cos ¢)

These are usually simplified by making the small angle assumptions for the
angles ¢, a, aBF, and flBF. The total angle of attack is the same in either
coordinate system.

8



2.2 The Moments

2.2.1 Roll Moments:

The FFAR configuration that was used for this project has four exhaust
nozzles. Each nozzle is "scarfed," that is, truncated by a plane that is not
norrn!, tz t ý •z.,lc ccatcrliw. TLs results -n a tangnijtie.l complienit to
the thrust. The nozzles are scarfed in a direction that results in the side
thrust being perpendicular to the centerline of the missile. The magnitude
of the moment of these canted nozzle sets is not contained in any of the
known documentation. The value of the roll moment and the roll moment
coefficients used in this analysis were deduced from rotation data acquired
by William P. Winn.' The roll moments considered for the simulation are
the moment due to thrust, LT, and roll damping, Lp. When substituted into
a simple, one dimensional roll rotation equation, the result is:

/• = (LT + Lp)/I (18)

The roll damping moment, expressed in terms of the non-dimensional roll
damping coefficient, is:

L, = (2-)(p--) C1 , p (19)

2 2

where:

C4, = The roll damping coefficient (n.d.)
S = Reference Area (missile cross sectional area) (ft2 )
A = Reference Length (missile diameter) (ft)
p = Air density (slugs/ft3 )

Winn's data showed a roll velocity increase from about 1 rev/s at the exit
of the launch tube to about 24 revs/s at burnout, then what appeared to be
an exponential decay. A Cip value of -0.25 produced an initial roll decay rate
that matched Winn's data after burnout. Then with this roll damping, the
rocket thrust moment in the roll direction was determined that produced the
observed spinup. The resulting moment was 0.349 ft-lbs at the full thrust of
734 lb. This represents a thrust offset of less than one-half degree with the
momentum arm of each nozzle approximately 0.75 in. from the center line.
A comparison of the roll simulation to Winn's data is shown in Figure 4.

2.2.2 Pitch and Yaw Moments:

Excep.` for the moments resulting from the Magnus Effect, the moments used
in this analysis are standard for aircraft and missile analysis. Therefore, these
will be treated only briefly. Since the vehicle is symmetrical, the coefficients

9



25

,>,,20 -Model

"-1,5 - Winn's Data

"o 10,

0II
0 1 2 3 4 5 6 7 8 9 0

Time (seconds)

Figure 4: Predicted Roll Output Compared to the Data of Winn

that apply to an angle or Pngfdar velocity in the pitch axis are the same as
thos._ that apply for the yaw axis. The following disicussion will be limited
to the aerodynamic forces and moments for the pitch axis. These must be
applied in a similar manner to the yaw axis as well. Most of the values for
the coefficients were obtained from the USAF Missile DATCOM computer
program." This program is a special adaptation of the USAF Stability and
Control DATCOM methodology" for missile shapes.

The primary pitching moment is the result of the sum of all of the inplane
forces that results when a vehicle is at an angle of attack to the velocity
vector. Using the "linear aerodynamics" assumption, the normal force, N,,
is computed as follows:

N, = CN2,QSa (20)

where:

CN -= The normal force coefficient (n.d.)
Q -2pV 2, the dynamic pressure (lb/ft2)

Care must be taken since the coefficient is often expressed either per de-
gree or per radian of pitch angle. This coefficient is the result of the contri-
butions from all the aerodynamic surfaces of the vehicle, which are computed
separately. The full vehicle coefficient is not a straight sum of each of the

10



individual effects since the presence of other parts of the body will mod-
ify the contribution of the individual surface. In this case, the parts of the
vehicle are the body and the fins. There does not seem to be much interfer-
ence since the total effect is approximately equal to the sum of CN,, firt, and
CNa body- The fin contribution is between 50 and 60 percent of the total. The
DATCOM CNi,, values were entered into the analysis as a tabular function
of mach number, and CN,, fi,,, was estimated to be a constant 60 percent of
CN,. Required values are determined by interpolation of the data.

The pitching moment on the vehicle, M, is computed in terms of the
non-dimensional pitching moment coefficient as follows:

M.y = C.QSAa (21)

The moment about the center of mass of the normal forces on the vehicle can
be collectively expressed as a single total normal force acting at a point called
the center of pressure, XC,. This is a function of Mach number and is one of
the outputs of the DATCOM program. The DATCOM data is also entered
as a table in the 3DOF program. The position of the center of mass, Xcm,
has been determined from the actual flight hardware for the time before the
missile is fired and the time after the propellent has been expended. It has
been assumed that X,, varies linearly with time from launch to burnout,
then stays constant for the remainder of the flight. For this analysis, the
aerodynamic pitching moment coefficient is computed as a function of three
tabulated functicits:

C.. = CN.(XCp - X.)/IA (22)

This coefficient normally is the basis of the static stability of the vehicle
about the pitch axis. If the coefficient is negative, the vehicle is statically
stable; that is, if there is a positive angle of attack, the resulting moment will
be negative, causing a restoration to zero angle of attack. The sign of the
coefficient is negative if the center of pressure is located behind the center of
mass (positive x is in the direction of the front of the vehicle). The difference
between the two lengths is a measure of vehicle stability and is known as the
static margin, often expressed in multiples of the missile diameter.

There is a moment that results from the rate of change of pitch, q. As-
suming linear aerodynamics, this moment, Mq is expressed in terms of a
non-dimensional coefficient as follows:

Mq = C,,,A,5Q • (23)

The '-pitch damping derivative" C,,q can be computed from the CN0 for each
component and the distance between XCP for the component and Xt,,, for the
vehicle. For a missile, the primary contributor to the coefficient is the tail

11



surface, so the following approximate expressions was used for this analysis:

Cmq = -2CN.,t .o[(Xp fins - Xe ,,,vicle)/A]2  (24)

A second damping moment is jet damping, which can be significant in the
very early phase of the flight. Jet damping is the term used to describe the
reduction of angular momentum of a body that is losing mass. The formula
for jet damping is:

Mi = Wr(l1, - ) (25)

where:

MJvi = Moment about the ith axis
Wi = Angular velocity about the ith axis
rh = Jet exhaust mass flow rate
I.Li = the distance from the center of mass to the nozzle exit, in a

direction perpendicular to ith direction.
= the radius of gyration about the i axis = I/•rn

2.2.3 Magnus Moments

The classical analysis of the Magnus effect considers the aerodynamic effects
of a spinning cylinder in a cross flow. A potential flow theory analysis, which
represents the spinning cylinder by a source/sink couple with circulation,
resu!ts in the prediction of a normal force (lift) and no drag. As White'
points out, experiments show that the lift is, at best, only about one-half
that predicted, and spinning causes the drag to increase above the value
experienced by a non-rotating cylinder. The results are nicely summarized
in Figure 5, from White. The theoretical (potential theory) coefficient of lift,
using White's nomenclature is:

L 27raw (26)QC,,QS U•

where:

a = cylinder radius (ft)
b = cylinder length (ft)
L = Normal force (Lift) (lb)

•2 0PU (lb/ft2)

S = 2 b a, the cross sectional area of the cylinder (ft2)
U.0 -= Cross flow velocity (ft/s)
w = angular velocity of cylinder (1/s)
p = fluid density (slugs/ft3 )

12
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Figure 5: Magnus Lift and Drag Figure from Reference 9, Originally From
Reference 5, With the Curve Fits Through the Experimental Data Used for
This Study
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The experimental values for both drag and lift coefficients tend to ap-
proach asymptotic val:ies at high velocity ratios, which means at higl, ro-
tation rates, the lift and drag are independent of the rotational velocity.
Similarly, the experimental coefficient of drag at low rotation rates is inde-
pendent of rotation rate. In any flat region, the Magnus force for the two
parts of the REFS mfissile would be identical to the result if the entire missile
were spinning at the same rate, and the Magnus moments would be no larger
than for a typical spinning missile. It is in those regions where the coefficients
have the greatest slope that one would experience the greatest difference in
force for the two spinning sections, and, hence, the greatest Magnus mo-
ments. Since this analysis is only an r -proximate attempt to determine the
worst case Magnus effect, the coefficients will be assumed to follow a linear
relationship to velocity ratio, using the value through the regions of greatest
slope. Two additional lines are shown on the curve. The equations of these
lines are:

CL = (27)
U.0aw

CD = . - 1 (28)

The approximate Magnus results are now applied to the dual spinning
cylinders of the REFS missile. Two views of the missile are shown in Figure 6.
The view on the lower left is an elevation view that is normal to the pitch
plane and shows the missile at a total angle of attack a to the free stream
velocity vector V. It is assumed that U0, for the Magnus calculation is the
cross wind component of V, or V sin a, which is customary for projectile
analysis. It is further assumed that the Magnus force for each section of the
cylinder is not influenced by the spinning of the other section. One could
imagine that the swirl induced by the front might modify the flow over the
back, but that has been ignored here. The projected view on the upper
right is a view from a location in the pitch plane looking in the negative z
direction. From this location, the velocity vector is below the missile, and
the cross flow velocity is pointing out of the page. Assuming positive angular
velocity p of the rocket motor (the rear section) and a positive increment of
angular velocity Ap of the front cylinder, then both Magnus lift vectors point
toward the left, or the negative y direction, and the lift on the front is larger
than that of the rear. On this side of the missile, the tangential velocity
due to rotation is in the same direction as the cross flow velocity. Using the
subscript 1 to denote the front cylinder of the missile and 2 to denote the
rear cylinder, the magnitude of the lift on the second cylinder is:

L2 = (CL)2Q., 2 b2 a2  (29)

14



r1L2 = (2ap) (P112)
2 a= (30)

L2 = p Vsina 2 a2 b2 p (31)

Similarly, the lift on the front of the cylinder is:

L=p Vsina 2 a2 b, (p+Ap) (32)

The moment caused by these parallel forces has a magnitude about the cm
equal to the sum of the product of each force times its moment arm, Ii. The
direction of the moment is out of the page, which is the negative z direction.
Therefore, the vector expression for the moment is:

Tm•gL = -(L1t- L 2 12 ) k (33)

In the spirit of the approximate nature of this analysis, the following
simplifying assumptions are made: the force center (center of pressure) of
each Magnus force is the center of each cylinder, the cylinders have the
same radius, a, and the cylinders are each the same length, b. Further, it
is assumed that the cm is approximately at the joint of the two cylinders,
which makes each moment arm b/2. When applied, the resulting expression
for the moment is:

T,,,JL = -pVa 2 b2 (Ap) sin a k (34)

Note that the moment is no longer a function of the rocket motor angular
velocity, only the difference between the rotational speeds.

The Magnus drag forces are also shown in Figure 6 in the elevation view.
Note that if both p and Ap are positive, and if we are in a region of increasing
CD, the drag in the front will be larger than that in the back, causing the
reculting moment to be into the page, which is in the positive y direction. If
the above assumptions are applied to the "worst case" linear portion of the
drag curve, the result i3:

TMEa9D = lpVa'bP(Ap) sin a j (35)

The moment from the drag has a magnitude of one-half of that from the
lift, and is potentially destabilizing since an increase in a results in a higher
value of the moment that is trying to increase a. This is resisted by the
inherent aerodynamic static stability of the missile provided by the fins, so
the magnitudes of each must be examined to determine the stability.

15



y

D~2

?igTC ~ ~eV~i~f Viw o th pich lane and N4ornmal View in the Pitch

pla~ne of the REFS Missile ShowinS 1a68LftadDagFre



2.3 Solution of Equations of Rotation

The aerodynamic moments discussed above are explicit functions of the angle
of attack and sideslip and their angular velocities. These can be converted
into the euler angles and the euler angular velocities through Eq. 5 and
the angle of attack and sideslip conversions mentioned in the descriptions
of the coordinate systems. The result is a system of three coupled, non-
linear, non-homogeneous, second order ordinary differential equations, with
non-constant coefficients. While the equations yield analytical solutions for
only some special simplifications, they can be solved easily with numerical
methods. Observe that j and •b are the only second derivatives in the y and
z component equations. The value of -k can then be substituted into the x
component equation to arrive at an x component equation with ý as the only
second derivative.

]" (LT + Iýsin0+ 10 cos0)/I

=(T, - (I'- I)sin0cosO- l0 . cosO)/r (36)
0= (ET, + (21'- 1)00 sin0 + IOq)/I'cos0

Notice that the third equation is undefined if 0 goes to 90 degrees. This
should not be a problem for a well behaved missile, since this angle is the
angle of attack. In practice, these equations are treated as three first order
equations in the angular velocities, and three additional first order equations
for the angles complete the equation set:

= fjT4 dt + 0o
f = fore dt+ o

Tk = 'foT dt+7 (37)

0 fý 0 dt +40

0 = frO dt+0o

Vk = fore dt+ Oo

The initial positions of the angles and angular velocities are all that is re-
quired to start the solution. The strategy for this analysis was to provide a
slight perturbation at the beginning and observe the progress of the solution.
The perturbation was to set the initial angle of attack, Oo, equal to 5 degrees,
the roll velocity, 7o is set to 1 revolution per second, and all of the other
angles and angular velocities equal to 0. As the solution progressed, if the
angle of attack tended to increase, the missile was deemed unstable. If the
angle of attack tended towards 0, the missile was deemed stable.
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Parameter Value
a 0.1163 ft
b 3.0 ft
CIF -0.25
CN. 7.99 to 16.87 per radian
1. 0.00496 to 0.00363 slug-ft2

/, and 1, 2.146 to 1.514 slug-ft2

LT 0.349 ft-lbs
Mass 0.7736 to 0.5774 slugs
,h 0.1266 slugs/s
S 0.04246 ft2

V 0 to 2400 ft/s
X1. 41.9 to 35.9 in from nose
XIP 52.8 to 69.1 in from nose
AP -15 rev/s and +15 rev/s
A 0.2325 ft

Table 1: Parameters for REFS System Analysis

3 RESULTS
The principal result of this analysis is that the REFS missile configuration
is very stable. The conditions for the analysis are listed in Table 1. The
inherent static stability from the fins is well in excess of that required to
overcome the moments from Magnus lift and drag. Figures 7 and 8 show
the moments about the pitch axis with positive and negative forward section
spin respectively. In both cases, the Aero Restoring moment (from Cm,,)
gets larger than 30 ft-lbs while the Magnus moments are on the order of less
than 0.5 ft.lb. Note that the Aero Damping moment (from C,,q) and the
jet damping moments are the second and third largest moments. The pitch
plane moment from Magvus lift is lower than from Magnus drag in apparent
contradiction to what is expected from the coefficients. Pitch plane moment
from Magnus lift is the result of angle of sideslip. Since the initial condition
is an angle of attack only, sideslip angle is never very large compared to the
angle of attack, so the resulting moments are much lower.

The effect on total angle of attack is shown in Figure 9. In these plots,
angle of attack is shown for the DATCOM predicted C.,, for one-half that
value, and for one-tenth of that value. In every case the missile is stable,
although the positive spin case with the lowest coefficient is noticeably slower
in damping the disturbance.
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As mentioned above, the REFS missile static margin is high. The static
margin is in excess of 5 missile diameters, while 1 to 2 diameters is more
typical. Figure 10 shows the total angle of attack versus time with the more
typical static margins of 1 and 2 diameters. These margins appear sufficient
to overcome any Magnus moments.

An interesting result of this analysis is that the effects of the Magnus
moments are slightly less severe when the front section is spun in the negative
direction. This is especially evident in Figure 10, which shows both forward
spin directions on the same plot.

Finally, the one clear effect of front section spin is in the direction of
precession taken by the missile as the nose converges to the center. Notice in
Equation 34 that, given a positive angle of attack and no sideslip, the sign of
the moment about the z axis is the negative of the sign of the forward spin.
Therefore, a positive Ap results in an initial tendency for negative z moment
resulting in an initially negative tendency in 0, which is a positive sideslip
angle #. So, when viewed from the rear, the nose of the REFS experiment
would precess in a counterclockwise direction with positive Ap and would
precess in a clockwise direction with negative Ap. This is demonstrated in
the plots in which the Euler angle 0 is shown as a function of the Euler angle
4' (Figure 11).

Stability Considerations:
The results of the above analysis invite a more fundamental look at the

problem to determine when the Magnus effects could cause a disturbance to
missile flight.

The Bank - Pitch Coordinate System: The Yaw-Pitch Coordinate
system was used to analyze the angular motion of the REFS missile. There
is another coordinate system that is convenient for stability arguments and
for visualization of the moments on the missile. That is the "Bank - Pitch"
system, which is often used to analyze the motion of a top or gyroscope.3 As
shown in Figure 12, this system begins with a rotation an angle ?k about the
X axis, followed by a rotation of 0 about the new Y axis. Again, the missile
is allowed to rotate an angle 0 about the new X axis, but the coordinate
system does not perform this final rotation. In top or gyroscopic motion,
the angle 0 is referred to as the nutation angle and 0 is called the precession
angle.

If the new angular definitions are applied to the Ealer equations in a
manner similar to the initial part of this report, the following scalar equations
of rotational motion result:

ET, = I#+I4cosO-1 0sinO
ET, = l'i- (I,- I)4 2 sinOcos0 + I4'4sinO (38)

T, = I4sin + (21'2- 1)46cos6 - Iý
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The advantage of this system is that the angle 0 is the total angle of
attack referred to as E above. In addition, there is no sideslip angle. This
is a convenient system for analysis if the motion is similar to a well behaved
top, where the nutation angle stays greater than zero and does not change
rapidly. In the Bank - Pitch system, the coordinate x always points to the
nose, the coordinate y is always normal to the angle of pitch and points to the
right when viewed from the back of the missile; the coordinate z is always in
the pitch plane and started out pointing downward before any rolling takes
place. This system lends itself the simplest visualization of the aerodynamic
forces and moments, and, since the entire cross wind component is contained
in the angle 0, it is a good system to use for stability analysis.

When the equations of rotation are solved for the highest derivatives, the
following equations result:

4)= (2.T,-Ii cosO+I 60sinO)/I
0 = (Tv, + (I'- I)b 2 sin0cosO- I¢4)sinO)/I' (39)

= (ET. + (2r- I)6Ocos0- I)/rI'sin0

The first equation is for the spin of the missile. The right side of the third
equation can be substituted for the ' term, which reduces the equation to a
single second order derivative. The second equation contains the moments for
the pitch plane and determines the total angle of attack, or "nutation" angle.
The third equation, for bank, or "precession" angle, is undefined for a total
angle of attack, 0, equal to zero. This is similar to the gimbal lock problem of
a real gyroscope. The disadvantage of this system for long term prediction of
rotational motion of a missile is that the nutation angle (pitch) of a missile
does change rapidly and sometimes gets very close to zero, or even goes
through zero. The former causes very high rates of angular accelerations of
the angle ¢, which slows down the computation; the latter causes the solution
to have a divide by zero error. Consequently, the set is useful for the initial
portion of the simulation, but cannot be used as 0 goes to zero.

The typical static stability analysis involves setting all angular rates to
zero (except for spin), setting the angle of attack (0) equal to some small
angle, and determining if the angular acceleration in pitch (0) is positive
(unstable), negative (stable), or zero (neutrally stable). With all angular
rates equal to zero, the pitch angular acceleration equation reduces to:

i = ETl,/I (40)

The moments in pitch are the following: aero restoring, aero damping, jet
damping, and Magnus drag. Magnus lift does not affect the static stabil-
ity. With zero angular rates, the two damping terms are zero and equation
becomes:

(C,,aQSAa, + 2pVa2b2(Ap)sina)/IF (41)
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With small angles, the sine of the angle approaches the value of the angle in
radians. Since a is the radius, it is one half the reference length A, and Q is
pV 2 /2. With these substitutions, the equation becomes:

A2

= (C,,,,QSA a + Q-.b 2 (Ap) a)/I' (42)

For a rocket such as REFS, with fins in the rear, Ci, is negative, and,
with a positive a, the contribution of the term is negative. If the forward
spin is negative, then the Magnus drag provides anther negative term that
works with the aero restoring moment to provide additional static stability.
If the forward spin is positive, the Magnus drag works against the restoring
force and could be destablizing. This is in agreement with the simulations.
Observe the more rapid decrease in angle of attack ii Figure 11 when the
AP is negative.

The value of C,,.a necessary for neutral stability condition is obtained by
setting 0 to zero:

b 2 A(Ap) (43)
S4V

Note that Cin is dimensionless except that it is per radian. So long as C,,
is more negative than the expression on the right, the missile is statically
stable. Remember that the Magnus drag moment was based on the worst
slope of the drag curve, so the analysis is conservative and overpredicts the
destablizing effects for a good part of the flight regime.

Equation (41) indicates that the critical flight condition occurs at min-
imum velocity. The typical velocity profile for the REFS mission is for the
missile to leave the launch tube at about 100 ft/s and rapidly accelerate to
2400 ft/s at burnout. There is a local minimum at apogee of about 140 ft/s.
When this minimum and the missile parameters from Table 1 are substituted
into the above equation, the minimum magnitude of the coefficient is about
8.3. Recall that the C., can be expressed as the product of CNC,, times the
static margin. At low speeds, this missile has a CNv,, of about 9.3. This
indicates that the static margin for neutral stability is about 0.88.

The equation for precession (the ¢ equation) reinforces the previous ob-
servation that the Magnus lift term controls the direction of precession. For
the initial condition when the only angular velocity is the spin and the only
angle is a small angle of attack, the equation reduces to,

ý = ET,/I' sine (44)

With no q or r angular velocity, there is no z damping, so the only moment
is the Magnus lift moment:

= -p V a2 b2 (Ap) sin c/Isin 0 (45)
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With this coordinate system, the Magnus Lift moment remains along the z
ax!,. and forces the precession in the diroction opposite to the sense of the
forward relative rotation rate, Ap. A stable missile will begin to develop a
negative 6, adding a positive kinetic term to the ' equation. Eventually the
precession acceleration is balanced by damping terms.

A final stability question that might be addressed is one usually analyzed
for tops and gyroscopes: are there any solutions with constant angle of attack
(nutation angle) and constant precession rate. Since the gravitational term
for a top is always a pure Ty, the typical top has only very small T, terms
which are associated with damping of the usually low precession rates. With
no i terms, and essentially no moments, then the third equation of rotation
shows that there will be no change to the precession rate. Then, assuming
that there is little or no change to the spin rate, the second equation provides
the precession rate required to cancel out the gravitational moment.

For the REFS niissile, the static stability is so high that the missile never
stays at an appreciable angle of attack for very long. If the static maigin were
reduced to near neutral magnitudes, then the Magnus lift moment provides a
moment in the z direction, which is not present in top motion. The Magnus
lift moment accelerates the precession until balanced by kinetic and damping
terms at an equilibrium precession rate. This rate would probably not be the
correct precession rate to balance any aerodynamic moments in the nutation
equation. Even a top does not automatically find the correct precession
rate to eliminate nutation, but must be coaxed into it, which takes a little
practice. To find a constant nutation angle solution for missile flight with
Magnus lift moments would demand a very contrived set of conditions.

4 CONCLUSIONS

The REFS missile will not suffer any problems from Magnus moments. The
missile is more aerodynamically stable than typical missiles. If the static
margin were reduced to typical levels of 1 to 2, the missile should show no
ill effects. The static stability analysis indicated that if the static margin
were below 1, some problems could develop at apogee if the AP is positive.
If direction of rotation of the front section relative to the rear is an open
choice, AP should be in the negative sense (counterclockwise looking from
the rear). This will provide additional aerodynamic stability.
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